
DSP System Toolbox™

Getting Started Guide

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

DSP System Toolbox™ Getting Started Guide
© COPYRIGHT 2011–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
April 2011 First printing Revised for Version 8.0 (R2011a)
September 2011 Online only Revised for Version 8.1 (R2011b)
March 2012 Online only Revised for Version 8.2 (R2012a)
September 2012 Online only Revised for Version 8.3 (R2012b)
March 2013 Online only Revised for Version 8.4 (R2013a)
September 2013 Online only Revised for Version 8.5 (R2013b)
March 2014 Online only Revised for Version 8.6 (R2014a)
October 2014 Online only Revised for Version 8.7 (R2014b)
March 2015 Online only Revised for Version 9.0 (R2015a)
September 2015 Online only Revised for Version 9.1 (R2015b)
March 2016 Online only Revised for Version 9.2 (R2016a)
September 2016 Online only Revised for Version 9.3 (R2016b)
March 2017 Online only Revised for Version 9.4 (R2017a)
September 2017 Online only Revised for Version 9.5 (R2017b)

Introduction
1

DSP System Toolbox Product Description 1-2
Key Features . 1-2

Configure Simulink Environment for Signal Processing
Models . 1-3

Installation . 1-3
Required Products . 1-3
Related Products . 1-4

ARM Cortex-M and ARM Cortex-A Optimization 1-5

Configure the Simulink Environment for Signal Processing
Models . 1-7

About DSP Simulink Model Templates 1-7
Create Model Using the DSP System Toolbox Simulink Model

Template . 1-7
DSP Simulink Model Templates . 1-8
See Also . 1-14

Design a Filter with fdesign and Filter Builder
2

Filter Design Process Overview . 2-2

Design a Filter Using fdesign . 2-3

Design a Filter Using Filter Builder . 2-8

v

Contents

Design Filters in Simulink
3

Design and Implement a Filter . 3-2
Design a Digital Filter in Simulink . 3-2
Add a Digital Filter to Your Model . 3-6

Adaptive Filters . 3-9
Design an Adaptive Filter in Simulink 3-9
Add an Adaptive Filter to Your Model 3-14
View the Coefficients of Your Adaptive Filter 3-19

vi Contents

Introduction

• “DSP System Toolbox Product Description” on page 1-2
• “Configure Simulink Environment for Signal Processing Models” on page 1-3
• “ARM Cortex-M and ARM Cortex-A Optimization” on page 1-5
• “Configure the Simulink Environment for Signal Processing Models” on page 1-7

1

DSP System Toolbox Product Description
Design and simulate streaming signal processing systems

DSP System Toolbox provides algorithms, apps, and scopes for designing, simulating,
and analyzing signal processing systems in MATLAB® and Simulink®. You can model
real-time DSP systems for communications, radar, audio, medical devices, IoT, and other
applications.

With DSP System Toolbox you can design and analyze FIR, IIR, multirate, multistage,
and adaptive filters. You can stream signals from variables, data files, and network
devices for system development and verification. The Time Scope, Spectrum Analyzer,
and Logic Analyzer let you dynamically visualize and measure streaming signals. For
desktop prototyping and deployment to embedded processors, including ARM® Cortex®
architectures, the toolbox supports C/C++ code generation. It also supports bit-accurate
fixed-point modeling and HDL code generation from filters, FFT, IFFT, and other
algorithms.

Algorithms are available as MATLAB functions, System objects, and Simulink blocks.

Key Features
• Signal processing and linear algebra blocks for Simulink
• Streaming signal processing in MATLAB
• Single-rate, multirate, FIR, IIR, and adaptive filter design
• Time Scope, Spectrum Analyzer, and Logic Analyzer for visualizing and measuring

streaming signals
• Fixed-point modeling and simulation of signal processing algorithms
• Support for C and C++ code generation
• Support for HDL code generation

1 Introduction

1-2

Configure Simulink Environment for Signal Processing Models

In this section...
“Installation” on page 1-3
“Required Products” on page 1-3
“Related Products” on page 1-4

Installation

Before you begin working, you need to install the product on your computer.

Installing the DSP System Toolbox Software

The DSP System Toolbox software follows the same installation procedure as the
MATLAB toolboxes.

Installing Online Documentation

Installing the documentation is part of the installation process:

• Installation from a DVD — Start the MathWorks® installer. When prompted, select
the Product check boxes for the products you want to install. The documentation is
installed along with the products.

• Installation from a Web download — If you update the DSP System Toolbox software
using a Web download and you want to view the documentation with the MATLAB
Help browser, you must install the documentation on your hard drive.

Download the files from the Web. Then, start the installer, and select the Product
check boxes for the products you want to install. The documentation is installed along
with the products.

Required Products

The DSP System Toolbox product is part of a family of MathWorks products. You need to
install several products to use the toolbox. For more information about the required
products, see the MathWorks Web site, at http://www.mathworks.com/products/
dsp-system/requirements.html.

 Configure Simulink Environment for Signal Processing Models

1-3

http://www.mathworks.com/products/dsp-system/requirements.html
http://www.mathworks.com/products/dsp-system/requirements.html

Related Products

MathWorks provides several products that are relevant to the kinds of tasks you can
perform with DSP System Toolbox software.

For more information about any of these products, see either

• The online documentation for that product if it is installed on your system
• The MathWorks Web site, at http://www.mathworks.com/products/dsp-

system/related.html.

1 Introduction

1-4

http://www.mathworks.com/products/dsp-system/related.html
http://www.mathworks.com/products/dsp-system/related.html

ARM Cortex-M and ARM Cortex-A Optimization
The DSP System Toolbox supports optimized C code generation for popular algorithms
like FIR filtering and FFT on ARM Cortex-M and ARM Cortex-A processors.

You can generate C code that can be linked with the CMSIS library or calls the Ne10
library functions and compiled to provide optimized executables to run on ARM Cortex-M
or ARM Cortex-A processors.

To use the DSP System Toolbox support packages for ARM Cortex-M and ARM Cortex-A
processors, you must have the following products in addition to the DSP System Toolbox:
Simulink, Simulink Coder™ , Embedded Coder®, and MATLAB Coder.

To obtain more information and download the DSP System Toolbox support packages for
the ARM Cortex processors, see http://www.mathworks.com/hardware-support/
index.html.

See Also

Related Examples
• “Verify FIR Filter on ARM Cortex-A Processor in MATLAB” (DSP System Toolbox

Support Package for ARM Cortex-A Processors)
• “Real-Time ECG QRS Detection on ARM Cortex-A Processor” (DSP System Toolbox

Support Package for ARM Cortex-A Processors)
• “Verify FIR Filter on ARM Cortex-M Processor in MATLAB” (DSP System Toolbox

Support Package for ARM Cortex-M Processors)
• “Real-Time ECG QRS Detection on ARM Cortex-M Processor” (DSP System Toolbox

Support Package for ARM Cortex-M Processors)

More About
• “Installation and Setup” (DSP System Toolbox Support Package for ARM Cortex-A

Processors)
• “Installation and Setup” (DSP System Toolbox Support Package for ARM Cortex-M

Processors)
• “Deployment” (DSP System Toolbox Support Package for ARM Cortex-M

Processors)

 ARM Cortex-M and ARM Cortex-A Optimization

1-5

http://www.mathworks.com/hardware-support/index.html
http://www.mathworks.com/hardware-support/index.html

• “Deployment” (DSP System Toolbox Support Package for ARM Cortex-A Processors)

External Websites
• Port the Generated ARM Cortex-M CRL Code from MATLAB to KEIL μVision IDE
• Port the Generated ARM Cortex-M CRL Code from MATLAB to IAR Embedded

Workbench

1 Introduction

1-6

https://www.mathworks.com/matlabcentral/fileexchange/48809-port-the-generated-arm-cortex-m-crl-code-from-matlab-to-keil-%CE%BCvision-ide
https://www.mathworks.com/matlabcentral/fileexchange/48808-port-the-generated-arm-cortex-m-crl-code-from-matlab-to-iar-embedded-workbench
https://www.mathworks.com/matlabcentral/fileexchange/48808-port-the-generated-arm-cortex-m-crl-code-from-matlab-to-iar-embedded-workbench

Configure the Simulink Environment for Signal Processing
Models

In this section...
“About DSP Simulink Model Templates” on page 1-7
“Create Model Using the DSP System Toolbox Simulink Model Template” on page 1-7
“DSP Simulink Model Templates” on page 1-8
“See Also” on page 1-14

About DSP Simulink Model Templates

The DSP Simulink model templates let you automatically configure the Simulink
environment with the recommended settings for digital signal processing modeling. DSP
Simulink model templates enable reuse of settings, including configuration parameters.
You can create models from templates that use best practices and take advantage of
previous solutions to common problems. Instead of the default canvas of a new model,
select a template model to help you get started.

For more information on Simulink model templates, see “Create a Model” (Simulink).

Create Model Using the DSP System Toolbox Simulink Model Template

To create a new blank model and open the library browser:

1 On the MATLAB Home tab, click Simulink.
2 Click on DSP System to create an empty model with settings suitable for use with

DSP System Toolbox. The new model opens. To access the library browser, click the
Library Browser button on the model toolbar.

 Configure the Simulink Environment for Signal Processing Models

1-7

The new model using the template settings and contents appears in the Simulink Editor.
The model is only in memory until you save it.

DSP Simulink Model Templates

When you create a model by choosing one of the DSP Simulink model templates, the
model is configured to use the settings recommended for DSP System Toolbox. Some of
these settings are:
Configuration Parameter Setting
SingleTaskRateTransMsg error
multiTaskRateTransMsg error
Solver fixedstepdiscrete
EnableMultiTasking Off
StartTime 0.0
StopTime inf

1 Introduction

1-8

Configuration Parameter Setting
FixedStep auto
SaveTime off
SaveOutput off
AlgebraicLoopMsg error
SignalLogging off
FrameProcessingCompatibilityMsg error

The DSP Simulink model templates are:

• “DSP System Template” on page 1-9
• “Basic Filter Template” on page 1-10
• “ARM Cortex-A Model Template” on page 1-11
• “ARM Cortex-M Model Template” on page 1-12
• “Mixed-Signal System Template” on page 1-13

DSP System Template

Click on DSP System to create a blank model configured with settings recommended for
DSP System Toolbox.

 Configure the Simulink Environment for Signal Processing Models

1-9

Basic Filter Template

Click on Basic Filter to create a basic filtering model configured with settings
recommended for DSP System Toolbox.

This model implements a low pass filter and enables you to compare the filtered signal
with the original signal. The model acts as a starting point for modeling filtering
algorithms in Simulink using DSP System Toolbox.

1 Introduction

1-10

ARM Cortex-A Model Template

Click the ARM Cortex-A Model to create a basic model for code replacement with the
Ne10 library, which is optimized for ARM Cortex-A Processors. This model is configured
with settings recommended for DSP System Toolbox and ARM Cortex-A processors.

 Configure the Simulink Environment for Signal Processing Models

1-11

ARM Cortex-M Model Template

Click the ARM Cortex-M Model to create a basic model for code replacement with the
CMSIS library, which is optimized for ARM Cortex-M processors. This model is
configured with settings recommended for DSP System Toolbox and ARM Cortex-M
processors.

1 Introduction

1-12

Mixed-Signal System Template

Click the Mixed-Signal System template to create a basic A/D converter model
configured with settings recommended for DSP System Toolbox and mixed-signal
systems. This model performs A/D conversion by implementing an analog antialiasing
filter followed by a zero-order hold circuit. The model acts as a starting point for
modeling mixed-signal systems in Simulink using DSP System Toolbox. All discrete-time
signals are colored in red to indicate the fastest sample rate. Continuous-time signals are
colored in black. For additional sample time options, from the Display menu, select
Sample Time.

 Configure the Simulink Environment for Signal Processing Models

1-13

See Also

• “Filter Frames of a Noisy Sine Wave Signal in Simulink”

1 Introduction

1-14

Design a Filter with fdesign and Filter
Builder

• “Filter Design Process Overview” on page 2-2
• “Design a Filter Using fdesign” on page 2-3
• “Design a Filter Using Filter Builder” on page 2-8

2

Filter Design Process Overview

Note You must have the Signal Processing Toolbox installed to use fdesign and
filterBuilder. Advanced capabilities are available if your installation additionally
includes the DSP System Toolbox license. You can verify the presence of both toolboxes
by typing ver at the command prompt.

Filter design through user-defined specifications is the core of the fdesign approach.
This specification-centric approach places less emphasis on the choice of specific filter
algorithms, and more emphasis on performance during the design a good working filter.
For example, you can take a given set of design parameters for the filter, such as a
stopband frequency, a passband frequency, and a stopband attenuation, and— using
these parameters— design a specification object for the filter. You can then implement
the filter using this specification object. Using this approach, it is also possible to
compare different algorithms as applied to a set of specifications.

There are two distinct objects involved in filter design:

• Specification Object — Captures the required design parameters of a filter
• Implementation Object — Describes the designed filter; includes the array of

coefficients and the filter structure

The distinction between these two objects is at the core of the filter design methodology.
The basic attributes of each of these objects are outlined in the following table.
Specification Object Implementation Object
High-level specification Filter coefficients
Algorithmic properties Filter structure

You can run the code in the following examples from the Help browser (select the code,
right-click the selection, and choose Evaluate Selection from the context menu), or you
can enter the code on the MATLAB command line. Before you begin this example, start
MATLAB and verify that you have installed the Signal Processing Toolbox software. If
you wish to access the full functionality of fdesign and filterBuilder, you should
additionally obtain the DSP System Toolbox software. You can verify the presence of
these products by typing ver at the command prompt.

2 Design a Filter with fdesign and Filter Builder

2-2

Design a Filter Using fdesign
Use the following two steps to design a simple filter.

1 Create a filter specification object.
2 Design your filter.

Example 2.1. Design a Filter in Two Steps

Assume that you want to design a bandpass filter. Typically a bandpass filter is defined
as shown in the following figure.

In this example, a sampling frequency of Fs = 48 kHz is used. This bandpass filter has
the following specifications, specified here using MATLAB code:

A_stop1 = 60; % Attenuation in the first stopband = 60 dB
F_stop1 = 8400; % Edge of the stopband = 8400 Hz
F_pass1 = 10800; % Edge of the passband = 10800 Hz
F_pass2 = 15600; % Closing edge of the passband = 15600 Hz
F_stop2 = 18000; % Edge of the second stopband = 18000 Hz
A_stop2 = 60; % Attenuation in the second stopband = 60 dB
A_pass = 1; % Amount of ripple allowed in the passband = 1 dB

In the following two steps, these specifications are passed to the fdesign.bandpass
method as parameters.

Step 1
To create a filter specification object, evaluate the following code at the MATLAB
prompt:

d = fdesign.bandpass

 Design a Filter Using fdesign

2-3

Now, pass the filter specifications that correspond to the default Specification —
fst1,fp1,fp2,fst2,ast1,ap,ast2. This example adds fs as the final input
argument to specify the sampling frequency of 48 kHz.

>> BandPassSpecObj = ...
 fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2', ...
 F_stop1, F_pass1, F_pass2, F_stop2, A_stop1, A_pass, ...
 A_stop2, 48000)

Note The order of the filter is not specified, allowing a degree of freedom for the
algorithm design in order to achieve the specification. The design will be a minimum
order design.

The specification parameters, such as Fstop1, are all given default values when
none are provided. You can change the values of the specification parameters after
the filter specification object has been created. For example, if there are two values
that need to be changed, Fpass2 and Fstop2, use the set command, which takes
the object first, and then the parameter value pairs. Evaluate the following code at
the MATLAB prompt:

>> set(BandPassSpecObj, 'Fpass2', 15800, 'Fstop2', 18400)

BandPassSpecObj is the new filter specification object which contains all the
required design parameters, including the filter type.

You may also change parameter values in filter specification objects by accessing
them as if they were elements in a struct array.

>> BandPassSpecObj.Fpass2=15800;

Step 2
Design the filter by using the design command. You can access the design methods
available for you specification object by calling the designmethods function. For
example, in this case, you can execute the command

>> designmethods(BandPassSpecObj)

Design Methods for class
fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

2 Design a Filter with fdesign and Filter Builder

2-4

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

After choosing a design method use, you can evaluate the following at the MATLAB
prompt (this example assumes you've chosen 'equiripple'):

>> BandPassFilt = design(BandPassSpecObj, 'equiripple')

BandPassFilt =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x44 double]
 PersistentMemory: false

If you have the DSP System Toolbox installed, you can also design your filter with a
filter System object™. To create a filter System object with the same specification
object BandPassSpecObj, you can execute the commands

>> designmethods(BandPassSpecObj,...
'SystemObject',true)

Design Methods that support System objects for class
fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

>> BandPassFiltSysObj = design(BandPassSpecObj,...
'equiripple','SystemObject',true)

 Design a Filter Using fdesign

2-5

 System: dsp.FIRFilter

 Properties:
 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [1x44 double]
 InitialConditions: 0
 FrameBasedProcessing: true

 Show fixed-point properties

Available design methods and design options for filter System objects are not
necessarily the same as those for filter objects.

Note If you do not specify a design method, a default method will be used. For
example, you can execute the command

>> BandPassFilt = design(BandPassSpecObj)

BandPassFilt =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x44 double]
 PersistentMemory: false

and a design method will be selected automatically.

To check your work, you can plot the filter magnitude response using the Filter
Visualization tool. Verify that all the design parameters are met:

>> fvtool(BandPassFilt) %plot the filter magnitude response

If you have the DSP System Toolbox installed, the Filter Visualization tool produces
the following figure with the dashed red lines indicating the transition bands and
unity gain (0 in dB) over the passband.

2 Design a Filter with fdesign and Filter Builder

2-6

 Design a Filter Using fdesign

2-7

Design a Filter Using Filter Builder
Filter Builder presents the option of designing a filter using a GUI dialog box as opposed
to the command line instructions. You can use Filter Builder to design the same
bandpass filter designed in the previous section, “Design a Filter Using fdesign” on page
2-3

Example 2.2. Design a Simple Filter in Filter Builder

To design the filter using the Filter Builder GUI:

1 Type the following at the MATLAB prompt:

filterBuilder
2 Select Bandpass filter response from the list in the dialog box, and hit the OK

button.
3 Enter the correct frequencies for Fpass2 and Fstop2, then click OK. Here the

specification uses normalized frequency, so that the passband and stopband edges
are expressed as a fraction of the Nyquist frequency (in this case, 48/2 kHz). The
following message appears at the MATLAB prompt:

The variable 'Hbp' has been exported to the command window.

If you display the Workspace tab, you see the object Hbp has been placed on your
workspace.

4 To check your work, plot the filter magnitude response using the Filter Visualization
tool. Verify that all the design parameters are met:

fvtool(Hbp) %plot the filter magnitude response

2 Design a Filter with fdesign and Filter Builder

2-8

Note that the dashed red lines on the preceding figure will only appear if you are
using the DSP System Toolbox software.

 Design a Filter Using Filter Builder

2-9

Design Filters in Simulink

• “Design and Implement a Filter” on page 3-2
• “Adaptive Filters” on page 3-9

3

Design and Implement a Filter
In this section...
“Design a Digital Filter in Simulink” on page 3-2
“Add a Digital Filter to Your Model” on page 3-6

Design a Digital Filter in Simulink

You can design lowpass, highpass, bandpass, and bandstop filters using either the
Digital Filter Design block or the Filter Realization Wizard. These blocks are capable of
calculating filter coefficients for various filter structures. In this section, you use the
Digital Filter Design block to convert white noise to low frequency noise so you can
simulate its effect on your system.

As a practical application, suppose a pilot is speaking into a microphone within the
cockpit of an airplane. The noise of the wind passing over the fuselage is also reaching
the microphone. A sensor is measuring the noise of the wind on the outside of the plane.
You want to estimate the wind noise inside the cockpit and subtract it from the input to
the microphone so that only the pilot's voice is transmitted. In this chapter, you first
learn how to model the low frequency noise that is reaching the microphone. Later, you
learn how to remove this noise so that only the pilot's voice is heard.

In this topic, you use a Digital Filter Design block to create low frequency noise, which
models the wind noise inside the cockpit:

1 Open the model by typing

ex_gstut3

at the MATLAB command prompt. This model contains a Scope block that displays
the original sine wave and the sine wave with white noise added.

3 Design Filters in Simulink

3-2

matlab:ex_gstut3

2 Open the DSP System Toolbox library by typing dsplib at the MATLAB command
prompt.

3 Convert white noise to low frequency noise by introducing a Digital Filter Design
block into your model. In the airplane scenario, the air passing over the fuselage
creates white noise that is measured by a sensor. The Random Source block models
this noise. The fuselage of the airplane converts this white noise to low frequency
noise, a type of colored noise, which is heard inside the cockpit. This noise contains
only certain frequencies and is more difficult to eliminate. In this example, you
model the low frequency noise using a Digital Filter Design block. This block uses
the functionality of the Filter Design and Analysis Tool (FDATool) to design a filter.

Double-click the Filtering library, and then double-click the Filter Implementations
sublibrary. Click-and-drag the Digital Filter Design block into your model.

 Design and Implement a Filter

3-3

4 Set the Digital Filter Design block parameters to design a lowpass filter and create
low frequency noise. Open the block parameters dialog box by double-clicking the
block. Set the parameters as follows:

• Response Type = Lowpass
• Design Method = FIR and, from the list, choose Window
• Filter Order = Specify order and enter 31
• Scale Passband — Cleared
• Window = Hamming
• Units = Normalized (0 to 1)
• wc = 0.5

3 Design Filters in Simulink

3-4

Based on these parameters, the Digital Filter Design block designs a lowpass FIR
filter with 32 coefficients and a cutoff frequency of 0.5. The block multiplies the time-
domain response of your filter by a 32 sample Hamming window.

5 Click Design Filter at the bottom center of the dialog box to view the magnitude
response of your filter in the Magnitude Response pane. The Digital Filter Design
dialog box should now look similar to the following figure.

You have now designed a digital lowpass filter using the Digital Filter Design block.

You can experiment with the Digital Filter Design block in order to design a filter of your
own. For more information on the block functionality, see the Digital Filter Design block
reference page. For more information on the Filter Design and Analysis Tool, see “Filter
Designer” (Signal Processing Toolbox).

 Design and Implement a Filter

3-5

Add a Digital Filter to Your Model
In this topic, you add the lowpass filter you designed in “Design a Digital Filter in
Simulink” on page 3-2 to your block diagram. Use this filter, which converts white noise
to colored noise, to simulate the low frequency wind noise inside the cockpit:

1 If the model you created in “Design a Digital Filter in Simulink” on page 3-2 is not
open on your desktop, you can open an equivalent model by typing
ex_gstut4

at the MATLAB command prompt.

3 Design Filters in Simulink

3-6

matlab:ex_gstut4

2 Incorporate the Digital Filter Design block into your block diagram by placing it
between the Random Source block and the Sum block.

3 Run your model and view the results in the Scope window. This window shows the
original input signal and the signal with low frequency noise added to it.

 Design and Implement a Filter

3-7

You have now built a digital filter and used it to model the presence of colored noise in
your signal. This is analogous to modeling the low frequency noise reaching the
microphone in the cockpit of the aircraft. Now that you have added noise to your system,
you can experiment with methods to eliminate it.

3 Design Filters in Simulink

3-8

Adaptive Filters
In this section...
“Design an Adaptive Filter in Simulink” on page 3-9
“Add an Adaptive Filter to Your Model” on page 3-14
“View the Coefficients of Your Adaptive Filter” on page 3-19

Design an Adaptive Filter in Simulink

Adaptive filters track the dynamic nature of a system and allow you to eliminate time-
varying signals. The DSP System Toolbox libraries contain blocks that implement least-
mean-square (LMS), Block LMS, Fast Block LMS, and recursive least squares (RLS)
adaptive filter algorithms. These filters minimize the difference between the output
signal and the desired signal by altering their filter coefficients. Over time, the adaptive
filter's output signal more closely approximates the signal you want to reproduce.

In this topic, you design an LMS adaptive filter to remove the low frequency noise in your
signal:

1 If the model you created in “Add a Digital Filter to Your Model” on page 3-6 is not
open on your desktop, you can open an equivalent model by typing

ex_gstut5

at the MATLAB command prompt.

 Adaptive Filters

3-9

matlab:ex_gstut5

2 Open the DSP System Toolbox library by typing dsplib at the MATLAB command
prompt.

3 Remove the low frequency noise from your signal by adding an LMS Filter block to
your system. In the airplane scenario, this is equivalent to subtracting the wind
noise inside the cockpit from the input to the microphone. Double-click the Filtering
sublibrary, and then double-click the Adaptive Filters library. Add the LMS Filter
block into your model.

3 Design Filters in Simulink

3-10

4 Set the LMS Filter block parameters to model the output of the Digital Filter Design
block. Open its dialog box by double-clicking the block. Set the block parameters as
follows:

• Algorithm = Normalized LMS

 Adaptive Filters

3-11

• Filter length = 32
• Specify step size via = Dialog
• Step size (mu) = 0.1
• Leakage factor (0 to 1) = 1.0
• Initial value of filter weights = 0
• Clear the Adapt port check box.
• Reset port = None
• Select the Output filter weights check box.

The LMS Filter dialog box should now look like the following figure:

3 Design Filters in Simulink

3-12

 Adaptive Filters

3-13

5 Click Apply.

Based on these parameters, the LMS Filter block computes the filter weights using the
normalized LMS equations. The filter order you specified is the same as the filter order of
the Digital Filter Design block. The Step size (mu) parameter defines the granularity of
the filter update steps. Because you set the Leakage factor (0 to 1) parameter to 1.0,
the current filter coefficient values depend on the filter's initial conditions and all of the
previous input values. The initial value of the filter weights (coefficients) is zero. Since
you selected the Output filter weights check box, the Wts port appears on the block.
The block outputs the filter weights from this port.

Now that you have set the block parameters of the LMS Filter block, you can incorporate
this block into your block diagram.

Add an Adaptive Filter to Your Model

In this topic, you recover your original sinusoidal signal by incorporating the adaptive
filter you designed in “Design an Adaptive Filter in Simulink” on page 3-9 into your
system. In the aircraft scenario, the adaptive filter models the low frequency noise heard
inside the cockpit. As a result, you can remove the noise so that the pilot's voice is the
only input to the microphone:

1 If the model you created in “Design an Adaptive Filter in Simulink” on page 3-9 is
not open on your desktop, you can open an equivalent model by typing

ex_gstut6

at the MATLAB command prompt.

3 Design Filters in Simulink

3-14

matlab:ex_gstut6

2 Add a Sum block to your model to subtract the output of the adaptive filter from the
sinusoidal signal with low frequency noise. From the Simulink Math Operations
library, drag a Sum block into your model. Open the Sum dialog box by double-
clicking this block. Change the List of signs parameter to |+- and then click OK.

3 Incorporate the LMS Filter block into your system.

a Connect the output of the Random Source block to the Input port of the LMS
Filter block. In the aircraft scenario, the random noise is the white noise
measured by the sensor on the outside of the airplane. The LMS Filter block
models the effect of the airplane's fuselage on the noise.

b Connect the output of the Digital Filter Design block to the Desired port on the
LMS Filter block. This is the signal you want the LMS block to reproduce.

c Connect the output of the LMS Filter block to the negative port of the Sum block
you added in step 2.

 Adaptive Filters

3-15

d Connect the output of the first Sum block to the positive port of the second Sum
block. Your model should now look similar to the following figure.

The positive input to the second Sum block is the sum of the input signal and the low
frequency noise, s(n) + y. The negative input to the second Sum block is the LMS
Filter block's best estimation of the low frequency noise, y'. When you subtract the
two signals, you are left with an approximation of the input signal.
s n s n y yapprox() () ’= + -

In this equation:

3 Design Filters in Simulink

3-16

• s(n) is the input signal
•

s n approx() is the approximation of the input signal
• y is the noise created by the Random Source block and the Digital Filter Design

block
• y' is the LMS Filter block's approximation of the noise

Because the LMS Filter block can only approximate the noise, there is still a
difference between the input signal and the approximation of the input signal. In
subsequent steps, you set up the Scope block so you can compare the original
sinusoidal signal with its approximation.

4 Add two additional inputs and axes to the Scope block. Open the Scope dialog box by
double-clicking the Scope block. Click the Parameters button. For the Number of
axes parameter, enter 4. Close the dialog box by clicking OK.

5 Label the new Scope axes. In the Scope window, right-click on the third axes and
select Axes properties. The Scope properties: axis 3 dialog box opens. In the Title
box, enter Approximation of Input Signal. Close the dialog box by clicking
OK. Repeat this procedure for the fourth axes and label it Error.

6 Connect the output of the second Sum block to the third port of the Scope block.
7 Connect the output of the Error port on the LMS Filter block to the fourth port of the

Scope block. Your model should now look similar to the following figure.

 Adaptive Filters

3-17

In this example, the output of the Error port is the difference between the LMS filter's
desired signal and its output signal. Because the error is never zero, the filter continues
to modify the filter coefficients in order to better approximate the low frequency noise.
The better the approximation, the more low frequency noise that can be removed from
the sinusoidal signal. In the next topic, “View the Coefficients of Your Adaptive Filter” on
page 3-19, you learn how to view the coefficients of your adaptive filter as they change
with time.

3 Design Filters in Simulink

3-18

View the Coefficients of Your Adaptive Filter

The coefficients of an adaptive filter change with time in accordance with a chosen
algorithm. Once the algorithm optimizes the filter's performance, these filter coefficients
reach their steady-state values. You can view the variation of your coefficients, while the
simulation is running, to see them settle to their steady-state values. Then, you can
determine whether you can implement these values in your actual system:

1 If the model you created in “Add an Adaptive Filter to Your Model” on page 3-14 is
not open on your desktop, you can open an equivalent model by typing

ex_gstut7

at the MATLAB command prompt. Note that the Wts port of the adaptive filter,
which outputs the filter weights, still needs to be connected.

 Adaptive Filters

3-19

matlab:ex_gstut7

2 Open the DSP System Toolbox library by typing dsplib at the MATLAB command
prompt.

3 View the filter coefficients using a Vector Scope block from the Sinks library.
4 Open the Vector Scope dialog box by double-clicking the block. Set the block

parameters as follows:

a Click the Scope Properties tab.

• Input domain = Time
• Time display span (number of frames) = 1

3 Design Filters in Simulink

3-20

b Click the Display Properties tab.

• Select the following check boxes:

• Show grid
• Frame number
• Compact display
• Open scope at start of simulation

c Click the Axis Properties tab.

• Minimum Y-limit = -0.2
• Maximum Y-limit = 0.6
• Y-axis label = Filter Weights

d Click the Line Properties tab.

• Line visibilities = on
• Line style = :
• Line markers = .
• Line colors = [0 0 1]

e Click OK.
5 Connect the Wts port of the LMS Filter block to the Vector Scope block.

 Adaptive Filters

3-21

6 Set the configuration parameters:

a Open the Configuration Parameters dialog box by selecting Model
Configuration Parameters from the Simulation menu, and navigate to the
Solver pane.

b Enter inf for the Stop time parameter.
c Choose Fixed-step from the Type list.
d Choose Discrete (no continuous states) from the Solver list.

3 Design Filters in Simulink

3-22

We recommend these configuration parameters for models that contain DSP System
Toolbox blocks. Because these blocks calculate values directly rather than solving
differential equations, you must configure the Simulink Solver to behave like a
scheduler. The Solver, while in scheduler mode, uses a block's sample time to
determine when the code behind each block is executed. For example, the sample
time of the Sine Wave and Random Source blocks in this model is 0.05. The Solver
executes the code behind these blocks, and every other block with this sample time,
once every 0.05 second.

Note When working with models that contain DSP System Toolbox blocks, use
source blocks that enable you to specify their sample time. If your source block does
not have a Sample time parameter, you must add a Zero-Order Hold block in your
model and use it to specify the sample time. For more information, see “Continuous-
Time Source Blocks” in the DSP System Toolbox User's Guide. The exception to this
rule is the Constant block, which can have a constant sample time. When it does,
Simulink executes this block and records the constant value once at the start of the
simulation and any time you tune a parameter. This allows for faster simulations
and more compact generated code.

7 Close the dialog box by clicking OK.
8 Open the Scope window by double-clicking the Scope block.
9 Run your model and view the behavior of your filter coefficients in the Vector Scope

window, which opens automatically when your simulation starts. Over time, you see
the filter coefficients change and approach their steady-state values, shown below.

 Adaptive Filters

3-23

You can simultaneously view the behavior of the system in the Scope window. Over
time, you see the error decrease and the approximation of the input signal more
closely match the original sinusoidal input signal.

3 Design Filters in Simulink

3-24

You have now created a model capable of adaptive noise cancellation. So far, you have
learned how to design a lowpass filter using the Digital Filter Design block. You also
learned how to create an adaptive filter using the LMS Filter block. The DSP System
Toolbox product has other blocks capable of designing and implementing digital and
adaptive filters. For more information on the filtering capabilities of this product, see
“Filter Design” and “Filter Analysis”.

Because all blocks in this model have the same sample time, this model is single rate and
Simulink ran it in SingleTasking solver mode. If the blocks in your model have
different sample times, your model is multirate and Simulink might run it in
MultiTasking solver mode. For more information on solver modes, see “Recommended
Settings for Discrete-Time Simulations” in the DSP System Toolbox User's Guide.

To learn how to generate code from your model using the Simulink Coder product, see
the “Generate C Code from Simulink Model” section.

 Adaptive Filters

3-25

